Stataによる

パネル調査データ分析の実践

麦山 亮太 Ryota MUGIYAMA

学習院大学法学部政治学科

ryota.mugiyama@gakushuin.ac.jp

自己紹介

現所属

2021/04- 学習院大学法学部政治学科

経歴

2019/03 東京大学大学院人文社会系研究科修了、博士(社会学)

2019/04-2021/03 日本学術振興会特別研究員PD・一橋大学経済研究所

専門

社会階層・社会移動、労働市場、家族形成

*より詳しい業績などはこちら:http://ryotamugiyama.com

日本でもパネル調査データは飛躍的に増えている

東大社研パネル調査 (2007-)

親子の生活と学びに関する調査(2015-)

老研・ミシガン全国高齢者パネル調査(1987-)

全国就業実態パネル調査(2016-)

日本家計パネル調査(旧慶應義塾家計パネル調査、2004-)

消費生活に関するパネル調査(1993-2020)

くらしと健康の調査(JSTAR)(2007-)

大阪大学くらしの好みと満足度についてのアンケート(JHPS-CPS)

21世紀出生児/成年者/中高年者縦断調査(2001-)etc

繰り返しクロスセクション調査とパネル調査:特徴

繰り返しクロスセクション調査 Repeated cross-section survey:

異なる時点で、同じ調査項目(を含む調査)を、**母集団から都度新しくサンプリングして**調査を実施してデータを収集する

パネル調査 Panel survey:

異なる時点で、同じ調査項目(を含む調査)を、**すでに抽出したサンプルに対し て**再度実施してデータを収集する

*繰り返しクロスセクション調査であると同時にパネル調査にもなるような場合もある(e.g. 個人識別番号と国勢調査が紐付いている社会)

繰り返しクロスセクション調査とパネル調査:強みと弱み

繰り返しクロスセクション調査 Repeated cross-section survey:

- サンプルと母集団のずれはサンプリング時点でのみ生じる。そのため、**異なる** 時点間で集団の特徴を比較して記述するのに適している
- 同じ個人を複数回調査しているわけではないので、個人の変化を分析することはできない(集団の変化であれば可能)

パネル調査 Panel survey:

- 同一個人から繰り返しデータを収集するため、個人の変化を分析できる
- サンプルと母集団のずれはサンプリング時点とその後の継続調査の両方で生じる。そのため、異なる時点間で集団の特徴を比較して記述する目的には劣る

個人の変化を分析する:問いの例

同一個人内の従属変数の変化を記述・説明する

- 貧困状態の人が翌年に貧困でなくなる確率はどれくらいか?
- → 生存分析・イベントヒストリー分析(移行を従属変数とした分析)

同一個人内の時系列変化を記述・類型化する

- 学校を出てからの10年間の持ち家の履歴はどのように変化/類型化できるか?
- → ランダム効果(成長曲線)モデル、シークエンス分析・集団軌跡モデル

同一個人内の独立変数の変化が従属変数に与える効果を知る

今回扱う内容

パネルデータを使って、**独立変数(の変化)が従属変数に与える効果**を明らかに するための方法を学ぶ

- 非正規雇用になると、正規雇用と比べて主観的Well-beingは低くなるのか?
- 出産を経験すると、出産以前と比べて所得は低くなるのか?
- → 固定効果モデル、差分の差法/イベントスタディデザイン

さらに関連するトピックとして、どのようにして上記の分析を行うためのデータ を準備すればよいのか、その手順を学ぶ

下準備:パッケージのインストール

0_install_2023-03-09.doを開き、コードを順に実行しよう

ユーザーが作ったパッケージについての補足

- 一度インストールすると、Stata自体を新しくインストールし直したりしない限りは、再びダウンロードする必要はない
- すでにインストール済のパッケージをインストールしようとすると警告やエラーが出ることがある

目次

パネルデータの構造と作成手順

固定効果モデル

イベントの効果推定

ランダム効果モデル

カテゴリ変数を従属変数にする

脱落の問題と対処

今後の学習のための参考文献

パネルデータの構造と作成手順

パネルデータとは

パネルデータ:同一個人(個体)の複数時点にわたる観察(observation)からなるデータ。1つの行が1つの個体を表すのではなく、1つの観察を表す。

id	wave	income
1	1	112.5
1	2	200
1	3	200
1	4	300
2	1	50
3	1	700
3	2	525
3	3	525

wide形式とlong形式

パネルデータ分析を行う場合には、(ほぼ常に)1つの行が1つの観察を表すようになっている必要がある。

wide形式 (1つの行が1つの個体)

id	income1	income2	income3	income4
1	112.5	200	200	300
2	50			
3	700	525	525	

long形式(1つの行が1つの観察)

id	wave	income
1	1	112.5
1	2	200
1	3	200
1	4	300
2	1	50
3	1	700
3	2	525
3	3	525

パネルデータを構築する手順

個人所得の回答区間の中点をとって作成した連続変数を作りたいとする:

問47. 過去一年間の収入についてうかがいます。あなた個人、配偶者、世帯全体の収入はそれぞれどれくらいでしょうか。臨時収入、副収入も含めてお答えください。

		あなた個人	配偶者	世帯全体
1.	なし	1	1	1
2.	25 万円未満	2	2	2
3.	50万円くらい(25~75万円未満)	3	3	3
4.	100 万円くらい(75~150 万円未満)	4	4	4
5.	200万円くらい(150~250万円未満)	5	5	5
6.	300 万円くらい(250~350 万円未満)	6	6	6
7.	400 万円くらい(350~450 万円未満)	7	7	7
8.	500 万円くらい(450~600 万円未満)	8	8	8
9.	700 万円くらい(600~850 万円未満)	9	9	9
10.	1,000万円くらい(850~1,250万円未満)	10	10	10
11.	1,500万円くらい(1,250~1,750万円未満)	11	11	11
12.	2,000万円くらい(1,750~2,250万円未満)	12	12	12
13.	2, 250 万円以上	13	13	13
14.	わからない	14	14	14
15.	配偶者はいない		15	

パネルデータにたどり着くまでの3つの工程

(パネル調査データ特有の工程)

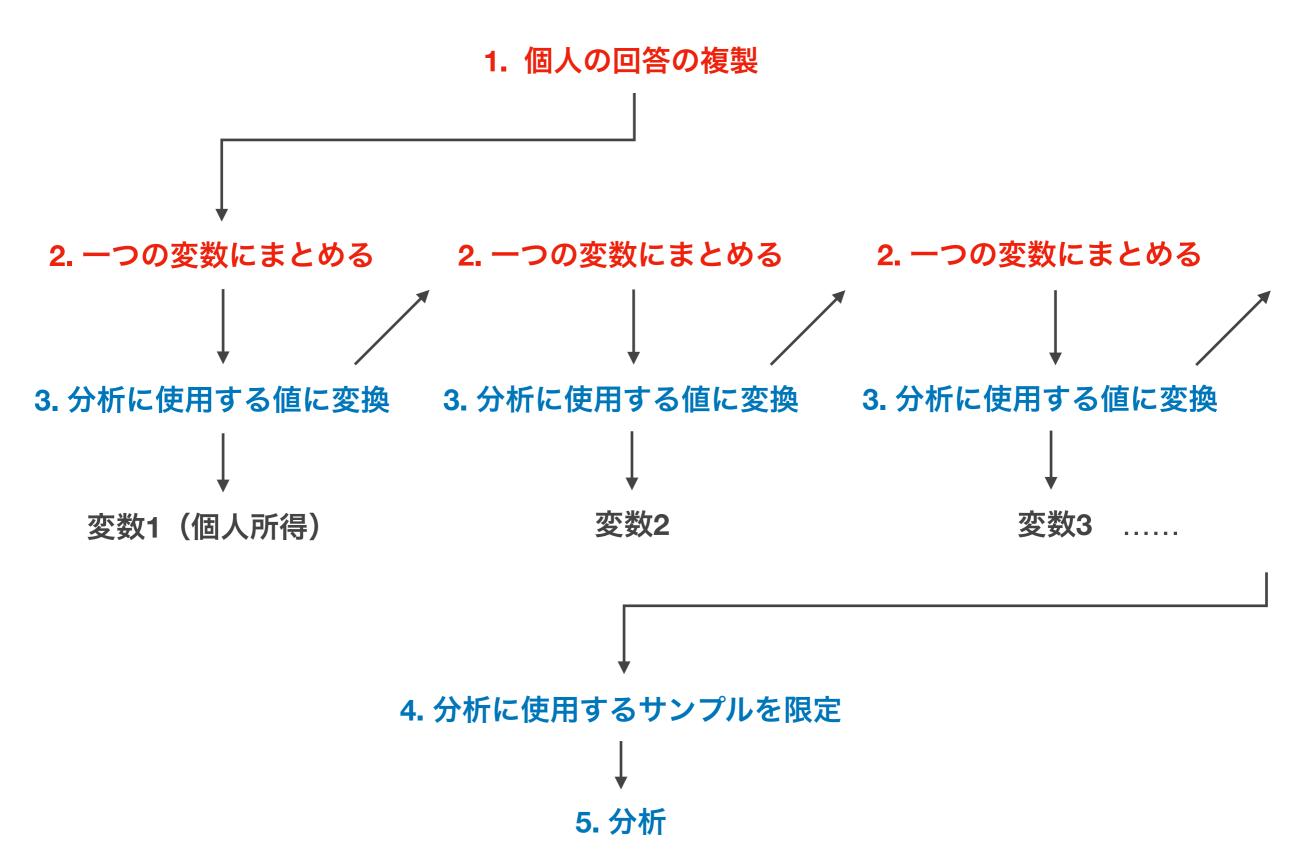
1. 個人の回答の複製

2. 一つの変数にまとめる

id	wave	w1q1	w2q1	w3q1	w4q1	q1	income
1	1	4	5	5	6	4	112.5
1	2	4	5	5	6	5	200
1	3	4	5	5	6	5	200
1	4	4	5	5	6	6	300
2	1	3	•	•	•	3	50
3	1	8	7	7	•	8	700
3	2	8	7	7		7	525
3	3	8	7	7		7	525

3. 値を変換した変数の作成

データ構築手順のフローチャート



自分が1~3のどの段階にいるのかを確かめる

もともとのデータの整理のされ方によって、1~3のどの段階からデータ構築作業 を始めればよいかが異なる

1 (個人の回答の複製) から始める例:

東大社研・若年壮年パネル調査、子どもの生活と学びに関する親子調査

*回顧調査をパネルデータに変換する場合もここから(例:SSM調査)

2 (一つの変数にまとめる) から始める例:

全国就業実態パネル調査

3(値を変換した変数の作成)から始める例:

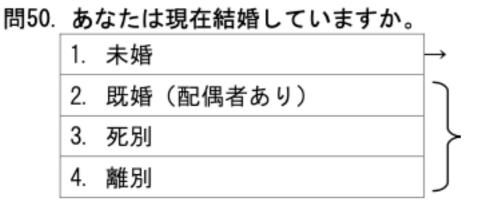
日本家計パネル調査、消費生活に関するパネル調査

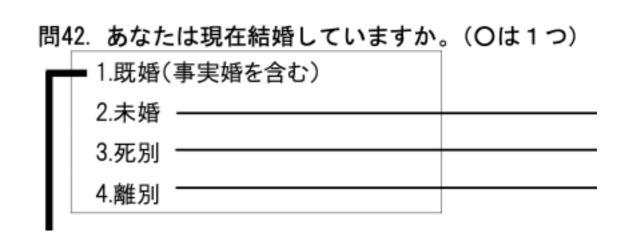
一つの変数にまとめるときの注意点

正しく同じ質問をまとめているかを繰り返し確認する

同じ質問項目でも、選択肢の番号や順序が変わっていないかを確認する

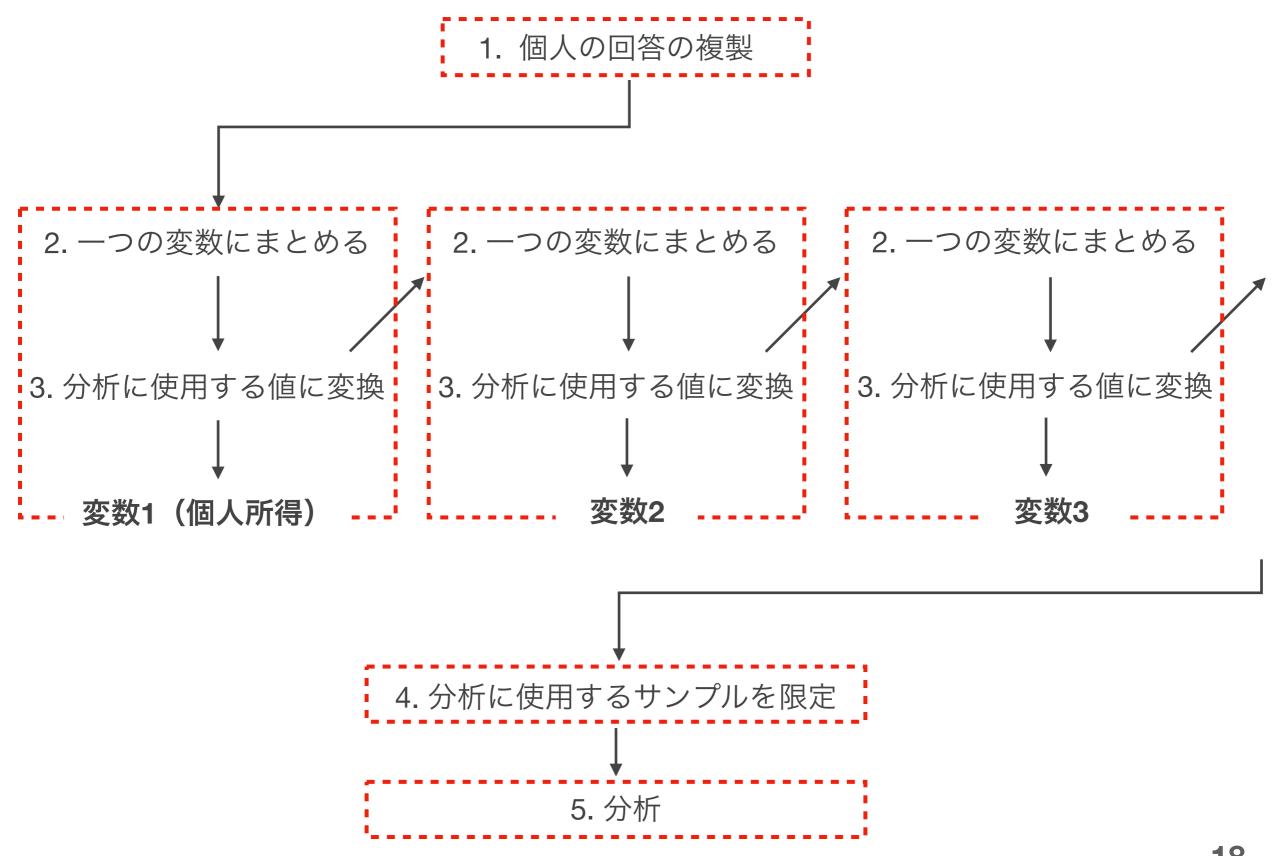
例)東大社研パネル調査の婚姻状態の質問項目はWave 1とWave 2以降で選択肢の順序が異なる





*理想的には、個々の分析者が1や2の段階をしなくていいように提供時からデータが整理されていることが望ましい

困難とdoファイルは分割せよ



doファイルの整理

- master_2023-03-09.do 全体を統合するdo-file
- 1_expand_2023-03-09.do 個人の回答を複製するdo-file
- 2_variable 変数の作成に関わるdo-fileをまとめたフォルダ
 - age_2023-03-09.do 年齢の変数を作成するdo-file
 - child_2023-03-09.do 子どもの有無の変数を作成するdo-file......
- 3_sample_2023-03-09.do サンプルを限定するdo-file
- 4_analysis_fe 固定効果モデルの節に関わるdo-fileをまとめたフォルダ
 - 4_1_descriptive.do
 記述的分析に使用するdo-file
 - 4_2_fixedeffect.do 固定効果モデルを推定するdo-file......

doファイルの整理方法についてのtips

- doファイルは何に関する、いつ作成した(編集した)ものなのかがわかるよう な名前をつけるのがおすすめ
- 類似する作業に関わるコードはまとめてフォルダに入れて管理するとわかりやすい。相対パスを書けばmaster do-fileからは同じように走らせることができる
- 上から順番にコードを走らせればすべての結果を常に同じように出力できる状態になっているのが望ましい(100行目から120行目は飛ばして〜みたいなのはダメ)
- 大きな変更があったときには日付を更新した新しいファイルを作るとよい。過去の日付のコードを走らせれば過去の分析結果を再現できるというのが理想

doファイルの開き方(Mac/Windows)

Mac

- Stataのウインドウは1つしか開かない
- .stpr ファイルを開くか、作業ディレクトリを指定することではじめて作業ディレクトリが変更される
- do-fileをクリックして開いても、作業ディレクトリが変更されることはない

Windows

- Stataのウインドウをたくさん開くことができる
- do-fileをクリックして開くと、当該のdo-fileが入っているフォルダが自動的に作業ディレクトリとして設定される
- 複数のdo-fileを開きたいときには、do-file上のメニューからファイル > 開く > 開きたいdo-fileを選んで開く

演習:回答を複製する

<u>いったんStataを閉じて、_project_statSeminar.stprをクリックしてStataを開いたうえで</u>、1_expand_2023-03-09.doを開き、コードを順に実行しよう

次のような場合、回答していないwaveについてもデータを複製しておくと良い

- 脱落確率のウェイトを作る場合:各waveで回答したかどうかを従属変数とする モデルを推定するため
- 一度脱落した個人が再度調査に回答するようになる場合:隣接時点の変化に関する変数を作る際に、誤って隣接していない時点の値を参照してしまうことがあるため

演習:変数を作成する

2_variableフォルダに入っているdo-fileをそれぞれ確認し、どのように変数を作成しているのかをみてみよう

パネルデータの加工・設定でよく使うコマンド

sort データの並び替えを行う。個人→時点、の順にソートしてあるとみやすい
by id: idごとに何らかの変数を作ったり計算をしたりする際に用いる
browse データを見る(目で見てきちんとできているかを確認するのが大事)
forvalues 指定した値に対して繰り返し処理を実行

variable[_n+1] ある変数の1行後ろの値を参照する際に用いる。

- 例) by id: change = 1 if marriage == 0 & marriage[_n+1] == 1
 xtset id wave idを個体、waveが時点を表すパネルデータであることを宣言
- **L.** 変数の前につけることで1時点前の値を参照することができる。**L2.**とすると、2時点前の値を参照できる。1時点前の値が存在しない場合は、. を返す。
- F. 変数の前につけることで1時点後の値を参照することができる。上に同じ。

おすすめしない方法:reshape long

1. 変数名の変換

wide状態のデータの変数の名前を変更 して、末尾に対応するwaveの数値を 記載するようにする

id	q1w1	q1w2	q1w3	q1w4
1	4	5	5	6
2	3			
3	8	7	7	

2. long形式への変換

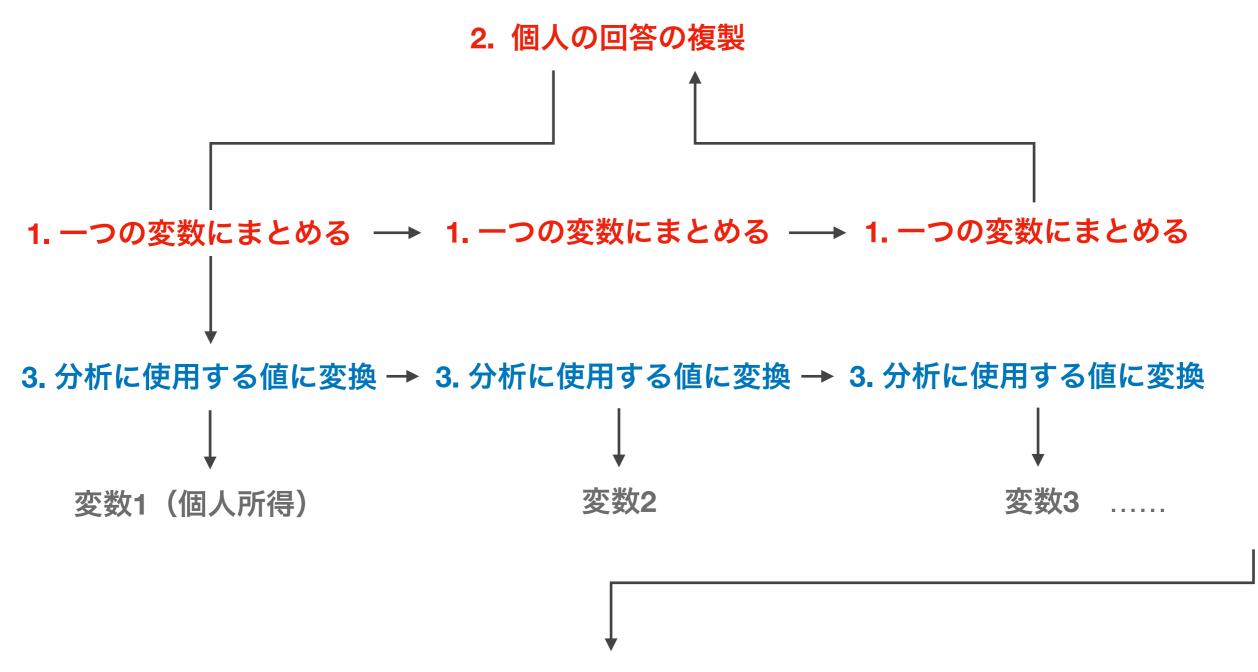
reshape long qlw, i(id) j(wave)

3. 値を書き換えて変数を作成

recode qlw ..., gen(income)

id	wave	q1w	income
1	1	4	112.5
1	2	5	200
1	3	5	200
1	4	6	300
2	1	3	50
3	1	8	700
3	2	7	525
3	3	7	525

reshape longを使ったデータ構築手順のフローチャート



4. 分析に使用するサンプルを限定

reshape longを使った方法は変数の作成と回答の複製を行き来するため、ある変数の作成に関わるコードが別の場所に置かれる。そうすると、管理がしにくい

演習:サンプルを限定する

- 3_sample_variable_2023-03-09.doを開き、コードを順に実行しよう
- 3_sample_select_2023-03-09.doを開き、コードを順に実行しよう

(後に説明) 固定効果モデルを使用する場合、分析に使用するサンプルを作成したのち、2時点以上回答していない個人をサンプルから除外するほうがよい

→1時点しか回答のない個人は推定から除外されてまったく分析に使われないため

固定効果モデル

非正規雇用は主観的well-beingを低くするのか

非正規雇用者は正規雇用者とくらべて主観的well-being(日本語では生活満足度とも、以下SWB)が低いといわれている。

では、非正規雇用はSWBを低くするのだろうか?

問い。日本の男性は、非正規雇用になると、正規雇用であるときと比べてSWBが低くなるのだろうか?

X(非正規雇用) **→ Y** (SWB)

平均処置(因果)効果 Average treatment/causal effect

統計的意味で因果関係という場合、そこで知りたいのは、ある個人iをある時点tにおいて非正規雇用(1)にしたときには、正規雇用(0)と比べてどれくらい SWBが変わるのか、という**処置効果**である:

Treatment Effect_{it} =
$$Y_{it}(1) - Y_{it}(0)$$

しかし実際には2つの状態を同時に観察することはできない。また、より知りたいのは、ある個人ではなく集団における処置効果、つまり**平均処置効果**である:

Average Treatment Effect_{it} =
$$E(Y_{it}(1)) - E(Y_{it}(0))$$

平均処置(因果)効果 Average treatment/causal effect

現実の雇	用形態	$Y_{it}(1)$	$Y_{it}(0)$
非正規	$X_{it} = 1$	$E(Y_{it}(1) X_{it} = 1)$	$E(Y_{it}(0) \mid X_{it} = 1)$
正規	$X_{it}=0$	$E(Y_{it}(1) \mid X_{it} = 0)$	$E(Y_{it}(0) \mid X_{it} = 0)$

平均処置効果を推定する場合には、以下がわかればよい:

$$E(Y_{it}(1)) - E(Y_{it}(0)) = \left[X_{it} E(Y_{it}(1) | X_{it} = 1) + (1 - X_{it}) E(Y_{it}(1) | X_{it} = 0) \right] - \left[X_{it} E(Y_{it}(0) | X_{it} = 1) + (1 - X_{it}) E(Y_{it}(0) | X_{it} = 0) \right]$$

しかし現実には灰色の部分はわからないため、次の値を平均処置効果とみなす:

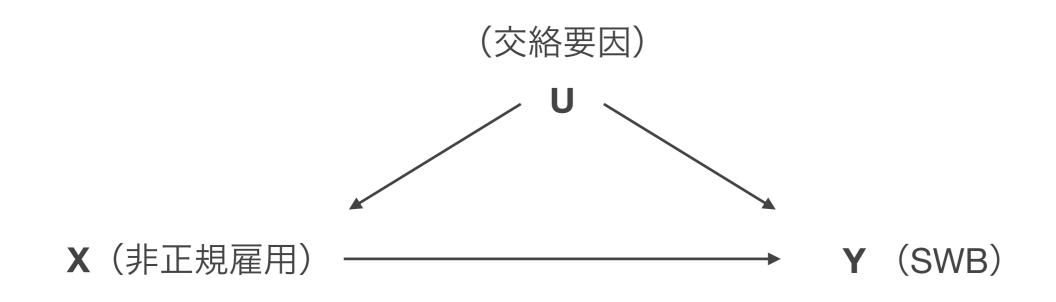
$$\delta = X_{it}E(Y_{it}(1) | X_{it} = 1) - (1 - X_{it})E(Y_{it}(0) | X_{it} = 0)$$

*ただし $(1 - X_{it})E(Y_{it}(1) | X_{it} = 0) = X_{it}E(Y_{it}(0) | X_{it} = 1)$ という仮定の下で!

交絡の問題

仮定の意味:現実に非正規雇用の人が正規雇用になったとしたら現実に正規雇用の人と(平均的に)まったく同じSWBになるし、逆もまた然り

けれど実際には、そうではないかもしれない。現実の両集団は、年齢、世代、学歴、所得、パーソナリティ、子ども時代の経験......などの点で異なる



もし交絡要因があるなら、両集団の単純平均の差は平均処置効果と一致しない!

線形回帰モデル Pooled OLS

個人iの時点tにおける従属変数を Y_{it} 、独立変数を X_{it1} …, X_{itk} と表記する。このとき、線形回帰モデルは次のように表すことができる:

$$Y_{it} = \beta_0 + \beta_1 X_{it1} + \dots + \beta_k X_{itk} + r_{it}, \quad r_{it} \sim N(0, \sigma_r^2)$$

係数 eta_j は、他の独立変数を一定としたうえで、独立変数 X_{itj} が1単位高いときに

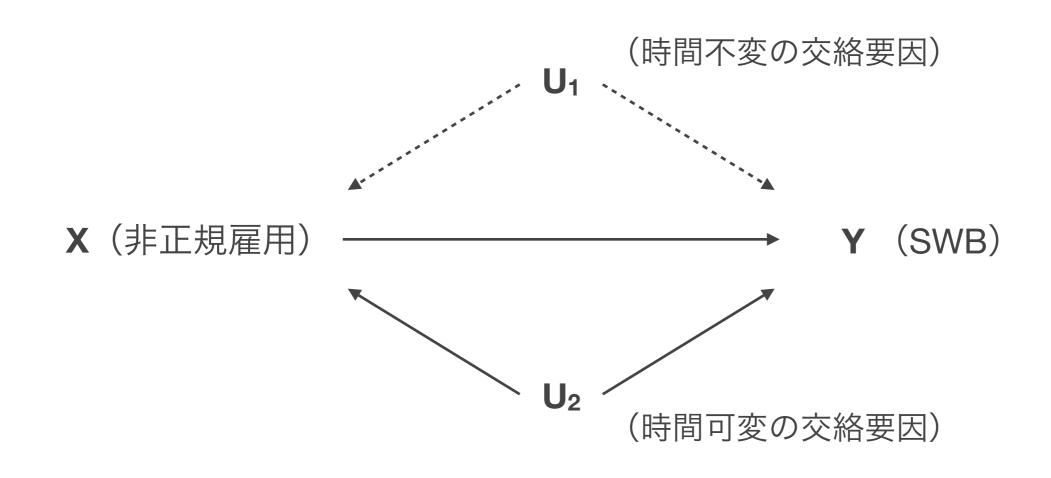
従属変数 Y_{it} がどれだけ高いかを表す

パネルデータに対して通常の線形回帰モデルを推定することを指して Pooled OLS (POLS) と呼ぶ

もし**関心のある独立変数と従属変数の間の交絡要因をすべて統制することができたなら(極めて強い仮定)**、係数は平均処置効果に一致する

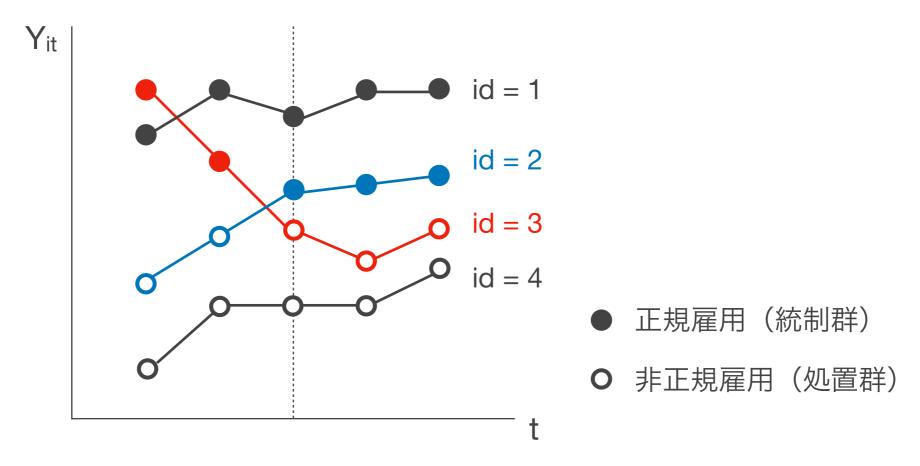
交絡の問題を減らす:パネルデータの強み

同一個人を複数回観察したデータを用いれば、観察期間中に変動しない個人要因 (U₁)を統制でき、交絡要因をすべて統制するという条件に**近づく**



もちろん、観察期間中に変動し、XとYの両者に影響する要因(U₂)が十分統制されていない場合、係数と平均処置効果と一致しない(e.g. 事故や病気)

パネルデータの考え方とクロスセクションの考え方



クロスセクション:ある時点における異なる個人を比較する。統制群と処置群の 差は個人差から生じているかもしれないし、個人内の差から生じているかもしれ ない。

パネルデータ:同じ個人内の異なる時点を比較することができる。この場合、 処置群と統制群の差は個人内の差のみによって生じる。

時間可変·不変、個人内·個人間分散

変数の種類はその性質によって時間可変のものと時間不変のものに分けられる

- 時間可変 time-varying:同一個人内で、観察期間中に値が変化しうる(例:所得、年齢、幸福度)
- 時間不変 time-invariant:同一個人内で、観察期間中に値が変化しない(例: 出生年、15歳の時の暮らし向き)

ある変数の分散 variance は、個人内のものと個人間のものに分けられる

- 個人内分散 within-variance: 同一個人内で生じる値のばらつき
- 個人間分散 between-variance: 異なる個人間で生じる値のばらつき

個人内分散を使う推定の発想

変数の総分散は個人間分散と個人内分散にわけられる:

$$\begin{split} s_{overall}^2 &\simeq s_{between}^2 + s_{within}^2 \\ \frac{1}{NT-1} \sum_i \sum_t (Y_{it} - \overline{Y})^2 &\simeq \frac{1}{NT-1} \sum_i (\overline{Y}_i - \overline{Y})^2 + \frac{1}{NT-1} \sum_i \sum_t (Y_{it} - \overline{Y}_i)^2 \end{split}$$

個人内分散<u>だけ</u>を係数の推定に使えば、平均処置効果(= ある個人に処置を与えたときの従属変数の変化量の平均)に<u>近い</u>係数の推定値を得ることができる、というのが個人内分散を使う推定(within-estimation)の発想

演習:変数の個人内・個人間分散

4_1_descriptive.doを開き、書かれているコードを順に実行しよう

Variable		Mean	Std. Dev.	Min	Max	0bservations
swb	overall	3.612086	.9337226	1	5	N = 12990
	between		.7568141	1	5	n = 1750
	within		.5959796	.430268	6.112086	T-bar = 7.42286
age	overall	35.94665	6.281475	20	50	N = 12990
	between		5.861577	20.5	47.5	n = 1750
	within		2.895806	29.51808	42.61332	T-bar = 7.42286
hincome	overall	4.790916	2.810673	0	31.5	N = 12990
	between		2.444284	.0625	31.5	n = 1750
	within		1.254111	-10.50454	30.54092	T-bar = 7.42286

status	0ve Freq.	Overall Freq. Percent		ween Percent	ithin
Regular Non-regu	11570 1420	89.07 10.93	1637 411	93.54 23.49	92.86 55.95
Total	12990	100.00	2048 (n = 1750)	117.03	85.45

Between percent:観察期間中に一度でも 当該の雇用形態を経験した人が何%いるか Within percent:一度でも当該の雇用形態 を経験した人に関して、平均して何%の観 察が当該の雇用形態であるか

固定効果モデル Fixed-effects model

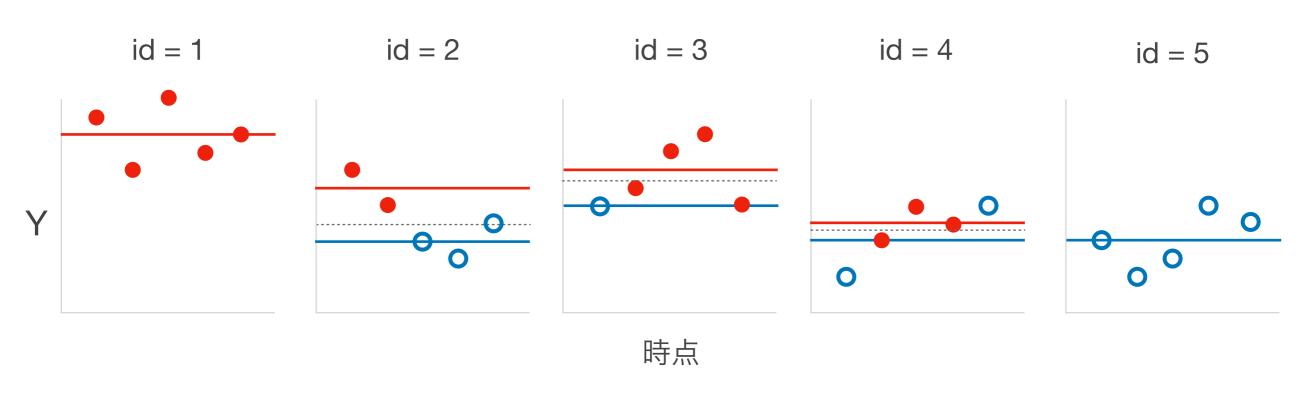
次のように、個人を表す項 u_i をモデルに含める:

$$Y_{it} = \beta_1 X_{it1} \cdots + \beta_k X_{itk} + u_i + e_{it}$$

- u_i は独立変数を統制したうえでの残差 r_{it} (ightarrowPooled OLS)の個人内平均を表す
- 時間不変の独立変数は u_i と区別できないため、推定から除外される。個人がわかれば必ずその値もわかる = 完全な共線性がある
- 係数 eta_j は、他の時間可変の独立変数と時間不変の個人要因を統制したうえで、 独立変数 X_{itj} が1単位高いときに従属変数 Y_{it} がどれだけ高いかを表す。**個人内効**

果 within-effect/within-estimatorとも言われる

個人内効果(within estimator)のおおまかなイメージ



● 正規雇用

• 非正規雇用

従属変数の変化と、独立変数の変化(この場合正規雇用と非正規雇用)を経験した人(id 2-4) それぞれについて、以下の値を計算する:

非正規雇用のときのYの平均値 - 正規雇用のときのYの平均値

個人内効果は、これを全個人について重み付け平均をとった値だとイメージすれば良い

推定の2つの方法

Demeaning:各変数および残差の個人内平均を引いた値を用いる

$$Y_{it} = \beta_1 X_{it1} + \cdots + \beta_k X_{itk} + u_i + e_{it}$$
の個人内平均を取った式は

$$\overline{Y}_i = \beta_1 \overline{X}_{i1} + \dots + \beta_k \overline{X}_{ik} + u_i + \overline{e}_i$$

上式から下式を引いて得られた以下の式を推定する:

$$Y_{it} - \overline{Y}_i = \beta_1 (X_{it1} - \overline{X}_{i1}) + \dots + \beta_k (X_{itk} - \overline{X}_{ik}) + (e_{it} - \overline{e}_i)$$

LSDV (Least-Squares Dummy Variable) :個人を表すダミー変数をN(人数)個含める

$$Y_{it} = \beta_1 X_{it} + \dots + \beta_k X_{kit} + \delta_1 I_{i1} + \dots + \delta_N I_{iN} + e_{it}$$

通常 $\delta_1, \dots, \delta_N$ には興味がないので、結果には掲載しない

Demeaned OLS(xtreg, fe)の出力結果例

```
Number of obs
Fixed-effects (within) regression
                                                                          12,990
Group variable: id
                                                 Number of groups =
                                                                           1,750
                                                 Obs per group:
R-sq:
     within = 0.0027
                                                                min =
                                                                               2
     between = 0.0668
                                                                             7.4
                                                                avg =
     overall = 0.0297
                                                                              11
                                                                max =
                                                 F(1,11239)
                                                                           30.48
corr(u_i, Xb) = 0.1468
                                                 Prob > F
                                                                          0.0000
                                Coef.
                                        Std. Err.
                                                             P>|t|
                                                                       [95% Conf. Interval]
                    swb
                                                       t
                 status
Non-regular employment
                           -.1822112
                                        .0330065
                                                    -5.52
                                                             0.000
                                                                      -.2469096
                                                                                  -.1175127
                             3.632005
                                                                       3.618924
                                                                                   3.645086
                                        .0066734
                                                   544.25
                                                             0.000
                  _cons
                sigma_u
                            .74494695
                sigma_e
                             .6398341
                                        (fraction of variance due to u_i)
                    rho
                            .57547092
F test that all u i=0: F(1749, 11239) = 8.92
                                                              Prob > F = 0.0000
```

Demeaned OLS(xtreg, fe)の出力結果例

観察数(人×時点)および人数

```
Number of obs
                                                                       12,990
Fixed-effects (within) regression
Group variable: id
                                               Number of groups =
                                                                    1,750
               within R<sup>2</sup>
R-sq:
                                               Obs per group:
    within = 0.0027
                                                             min =
     between = 0.0668
                                                                          7.4
                                                             avg =
     overall = 0.0297
                                                                           11
                                                             max =
                                               F(1,11239)
                                                                        30.48
corr(u_i, Xb) = 0.1468
                                                Prob > F
                                                                       0.0000
                               Coef.
                                      Std. Err.
                                                           P>|t|
                                                                     [95% Conf. Interval]
                    swb
                 status
Non-regular employment
                           -.1822112
                                       .0330065
                                                -5.52
                                                           0.000
                                                                    -.2469096
                                                                                -.1175127
                                                 544.25
                            3.632005
                                       .0066734
                                                           0.000
                                                                     3.618924
                                                                                 3.645086
                  cons
                sigma_u
                           .74494695
                                      残差の個人間分散と個人内分散の大きさ
                            .6398341
                sigma_e
                           .57547092
                                       (fraction of variance due to u_i)
                    rho
F test that all u_i=0: F(1749, 11239) = 8.92
                                                            Prob > F = 0.0000
```

個人効果 u_i が従属変数の分散を有意に説明するかどうかのF検定の結果

LSDV (reghdfe) の出力結果例

```
Number of obs
HDFE Linear regression
                                                                        12,990
Absorbing 1 HDFE group
                                                  F(1, 11239) =
                                                                        30.48
                                                  Prob > F
                                                                        0.0000
                                                  R-squared
                                                                        0.5937
                                                  Adj R-squared
                                                                        0.5304
                                                  Within R-sq.
                                                                        0.0027
                                                  Root MSE
                                                                        0.6398
                               Coef.
                                       Std. Err.
                                                                     [95% Conf. Interval]
                                                           P>|t|
                    swb
                 status
Non-regular employment
                           -.1822112
                                                           0.000
                                       .0330065
                                                   -5.52
                                                                    -.2469096
                                                                                -.1175127
                            3.632005
                                       .0066734
                                                           0.000
                                                                     3.618924
                                                                                 3.645086
                                                  544.25
                  _cons
```

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num. Coefs
id	1750	0	1750

LSDV (reghdfe) の出力結果例

HDFE Linear regression Absorbing 1 HDFE group

Number of obs	=	12,990	観察数
F(1, 11239)	=	30.48	
Prob > F	=	0.0000	
R-squared	=	0.5937	\mathbb{R}^2
Adj R-squared	=	0.5304	
Within R-sq.	=	0.0027	within R ²
Root MSE	=	0.6398	

swb	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
status Non-regular employment _cons	1822112 3.632005	.0330065 .0066734	-5.52 544.25	0.000 0.000	2469096 3.618924	1175127 3.645086

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num. Coefs
id	1750	0	1750

個人ダミーとその係数の個数

2つの方法の決定係数の違い

Demeaned OLS:個人内分散 s_{within}^2 の説明量

 $Y_{it}-\overline{Y}_i$ の分散がどの程度 $X_{1it}-\overline{X}_{1i}, \cdots, X_{kit}-\overline{X}_{ki}$ によって説明できるかを表す。Stataではwithin R²と表記される

LSDV:総分散 $s_{overall}^2$ の説明量

 Y_{it} の分散がどの程度 X_{1it} , …, X_{kit} , I_{i1} , …, I_{iN} によって説明できるかを表す(いわゆる通常の \mathbf{R}^2)

それぞれの決定係数は違った情報を与えるものなので、どちらがより「良い」か を考えることにはあまり意味がない

演習:固定効果モデルを推定する

4_2_fixedeffect.doを開き、コードを順に実行しよう

	(1)	(2)	(3)
	POLS	Demeaned	LSDV
Regular employment	0.000	0.000	0.000
	(.)	(.)	(.)
Non-regular employ∼t	-0.134***	-0.142***	-0.142***
	(0.027)	(0.033)	(0.033)
age	-0.069***	-0.010	-0.010
	(0.012)	(0.014)	(0.014)
age # age	0.001***	0.000	0.000
	(0.000)	(0.000)	(0.000)
Never married	0.000	0.000	0.000
	(.)	(.)	(.)
Married	0.543***	0.442***	0.442***
	(0.019)	(0.033)	(0.033)
Separated/divorced	-0.095*	0.061	0.061
	(0.048)	(0.068)	(0.068)
Logged household i∼e	0.241***	0.012	0.012
	(0.015)	(0.018)	(0.018)
Constant	3.317***	3.472***	3.472***
	(0.224)	(0.256)	(0.256)
Observations	12990	12990	12990
r2	0.133	0.023	0.602

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

残差の自己相関とクラスター・ロバスト標準誤差

回帰分析では残差が独立に同一の分布に従う(i.i.d.)との仮定のもとで標準誤差 を計算するが、パネルデータの場合にはこの仮定が成り立たない可能性が非常に 高い = 残差の自己相関 autocorrelation, あるいは系列相関 serial correlation

一般にパネルデータを用いる際には、個人(クラスター)内の相関を許容するク **ラスター・ロバスト標準誤差の使用が強く推奨**される*

ついでに残差の不均一分散に対しても頑健である

*clusterの数が小さいとバイアスが生じることが知られているが(Cameron and Miller 2015)、パネル調査 データで個人をクラスタとする場合にはほとんど心配する必要はない

演習:クラスター・ロバスト標準誤差

4_2_fixedeffect.doを開き、コードを順に実行しよう

	(4)	(2)	(2)
	(1)	(2)	(3)
	POLS	Demeaned	LSDV
Regular employment	0.000	0.000	0.000
	(.)	(.)	(.)
Non-regular employ∼t	-0.134*	-0.142***	-0.142***
	(0.056)	(0.041)	(0.041)
age	-0.069***	-0.010	-0.010
	(0.021)	(0.018)	(0.018)
age # age	0.001**	0.000	0.000
	(0.000)	(0.000)	(0.000)
Never married	0.000	0.000	0.000
	(.)	(.)	(.)
Married	0.543***	0.442***	0.442***
	(0.038)	(0.047)	(0.047)
Separated/divorced	-0.095	0.061	0.061
	(0.086)	(0.092)	(0.092)
Logged household i~e	0.241***	0.012	0.012
	(0.029)	(0.022)	(0.022)
Constant	3.317***	3.472***	3.472***
	(0.381)	(0.346)	(0.346)
0bservations	12990	12990	12990
N_clust	1750.000	1750.000	1750.000
r2	0.133	0.023	0.602

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

二方向固定効果モデル Two-way fixed-effects model

調査時点固有の効果(e.g. 景気変動)が結果に影響する可能性がある。このような場合、次のように時点の効果(時点を表すダミー変数)を統制するモデルを推定する:

$$Y_{it} = \beta_1 X_{1it} + \dots + \beta_k X_{kit} + u_i + \tau_t + e_{it}$$

 u_i をとくに個人固定効果、 au_t を時点固定効果という。

特別な事情がない限り、基本的には時点を表す変数は統制したほうがよい

時点と区別できない変数はモデルから除かれる(e.g. 同一コーホートを追跡した データにおける年齢の係数)

個別トレンド固定効果モデル Fixed-effects individual-slope model

個人によって(Xを条件づけたうえでの)平均値が異なるだけではなく、時点間の傾きも異なると想定する:

$$Y_{it} = \beta_1 X_{1it} + \dots + \beta_k X_{kit} + u_i + \gamma_i t + e_{it}$$

さらに時点固定効果を加えた以下のモデルを推定することもできる:

$$Y_{it} = \beta_1 X_{1it} + \dots + \beta_k X_{kit} + u_i + \gamma_i t + \tau_t + e_{it}$$

3時点以上の観察をもつ個体だけが独立変数の係数の推定値に貢献する

時間可変の個人効果を統制したモデルと考えればよいが、それが線形であるという強い仮定を置いている点に注意が必要

演習:二方向固定効果、個別トレンド固定効果

4_3_twfe_feis.doを開き、コードを順に実行しよう

TV	(1) WFE - Dem∼d	T	(2) WFE - LSDV	
Regular employment	0.000	(.)	0.000	(.)
Non-regular employ∼t	-0.145***	(0.041)	-0.145***	(0.041)
Never married	0.000	(.)	0.000	(.)
Married	0.436***	(0.046)	0.436***	(0.046)
Separated/divorced	0.049	(0.091)	0.049	(0.091)
Logged household i~e	0.007	(0.022)	0.007	(0.022)
wave=1	0.000	(.)		
wave=2	-0.076**	(0.025)		
wave=3	0.082**	(0.026)		
wave=4	-0.014	(0.028)		
wave=5	0.020	(0.028)		
wave=6	0.021	(0.029)		
wave=7	-0.061*	(0.029)		
wave=8	0.035	(0.030)		
wave=9	-0.017	(0.031)		
wave=10	0.006	(0.031)		
wave=11	-0.008	(0.032)		
Constant	3.323***	(0.132)	3.322***	(0.134)
Observations	12990		12990	
N_clust	1750.000		1750.000	
r2	0.028		0.604	

固定効果モデルの注意点

X(またはY)が変化していない個人は推定に用いられない

- 観察回数が少ないほど、また変化しにくい変数ほど、効果を検出するのが難しくなり、より多くのサンプルサイズが必要。有意でないから効果がないとは即断できない(statistical significance ≠ scientific significance)
- 個人内効果はATTであって、平均処置効果(ATE)とは一致しないかも(e.g. 雇用形態が変わる人は、非正規の負の効果が小さい人かも?)

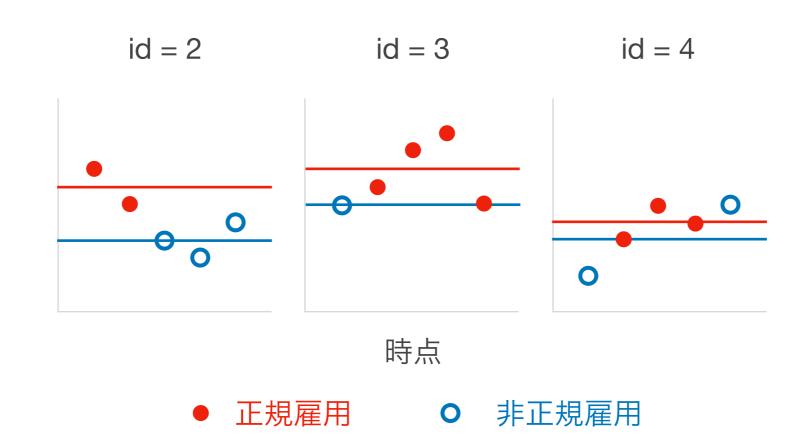
時間可変の要因は統制しきれない

• 対処は観察可能な時間可変の変数を適切にモデルに含めることのみ

変化の方向を区別しない

• 結果から議論をする際に問題になることがあるかもしれない(後述)

変化の方向の問題



固定効果モデルの推定値 = (他の時間可変の独立変数を統制したうえでの) 同一個人内の正規雇用のときの平均値と非正規雇用のときの平均値の差を集めたもの

変化を経験した個人のなかには、「正規雇用から非正規雇用になった人」と「非正規雇用から正規雇用になった人」がいる

変化の方向の問題

固定効果モデルで得られた非正規雇用の係数は負であった場合、非正規雇用であると、正規雇用であるときと比べてSWBが低いといえる

しかし、それが「正規から非正規になると下がる」からなのか、「非正規から正 規になると上がる」からなのかは厳密には区別できない

ただし、事実上一方向の変化が主である場合には、実質的意味は変わる

変化の向きを区別したモデルなども提唱されているが (Allison 2019; 有田・仲 2021) 、安易に使用しないほうがいい。それが本当に必要な問いなのか、だとしても研究デザインで解決すべき問題ではないのかをよくよく考える

Allison, Paul D. 2019. "Asymmetric Fixed-Effects Models for Panel Data." *Socius* 5:2378023119826441. 有田伸・仲修平, 2021, 「変化の向き等を区別したパネルデータ分析の実践:それでも使いたいあなたに」『東京大学社会科学研究所パネル調査プロジェクト ディスカッションペーパーシリーズ』134.

演習:移行行列

4_4_transitionmatrix.doを開き、コードを順に実行しよう

Employment	Employment		T-4-1
status	1	2	Total
1	9,828	190	10,018
	98.10	1.90	100.00
2	263	959	1,222
	21.52	78.48	100.00
Total	10,091	1,149	11,240
	89.78	10.22	100.00

イベントの効果推定

子どもをもつ女性は労働市場で不利を被るのか

出産を経ることで女性は就業面でさまざまな不利(就業中断、所得や賃金の減少など)を被るといわれている。では実際、その大きさはどの程度なのだろうか?

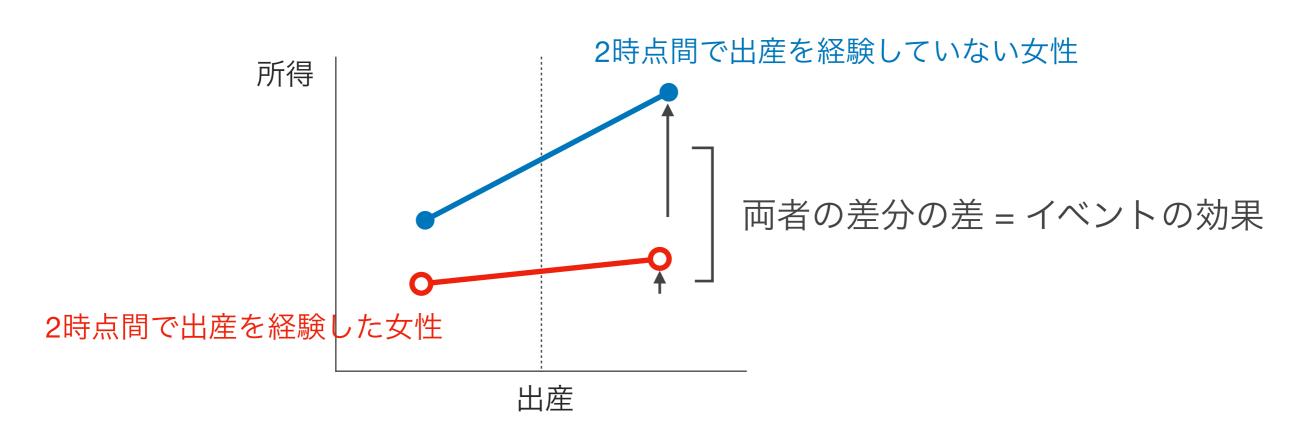
問い。日本の女性において、出産を経ることは労働市場におけるアウトカムに対してどのような影響を持つのか?その効果はどれほど続くのか?

Hsu, Chen-Hao. 2021. "Parity-Specific Motherhood Penalties: Long-Term Impacts of Childbirth on Women's Earnings in Japan." *Advances in Life Course Research* 50:100435.

イベントの効果推定の考え方

ある状態 (D=0とする) から別の状態 (D=1とする) へと変化し、それ以前の状態に戻ることはないような変化(イベント)の効果を推定する

イベントを経験した人の前後の所得変化を、イベントを経験していない人の平均 的な所得変化と比較し、その差をもってイベントの効果とみなす



差分の差法 Difference-in-differences (DD)

2時点のパネルデータがあり、 D_{it} はイベントを経験していないときは0、したあとは1をとるダミー変数とする。次のモデルで、イベントの効果を推定できる:

$$Y_{it} = \alpha D_{it} + \beta_1 T 2_t + u_i + e_{it}$$

イベントの発生が外生的である(イベントの発生が処置/統制群の別と相関しない)と仮定できるなら、個人固定効果 u_i を気にする必要はなく * 、以下のように単純化できる:

$$Y_{it} = \alpha D_{it} + \beta_1 T 2_t + \beta_2 \text{Treated}_i + e_{it}$$

このモデルは繰り返しクロスセクションでも推定できる。

*ただし、係数の大小に影響しないとしても、統制することで標準誤差を小さくすることはできるかもしれない。

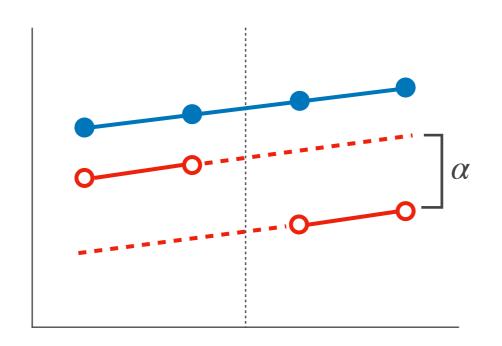
多時点のDD

二方向固定効果モデル(TWFE)は3時点以上のときのDDとして理解できる:

$$Y_{it} = \alpha D_{it} + \beta_1 X_{it1} + \dots + \beta_k X_{itk} + \tau_t + u_i + e_{it}$$

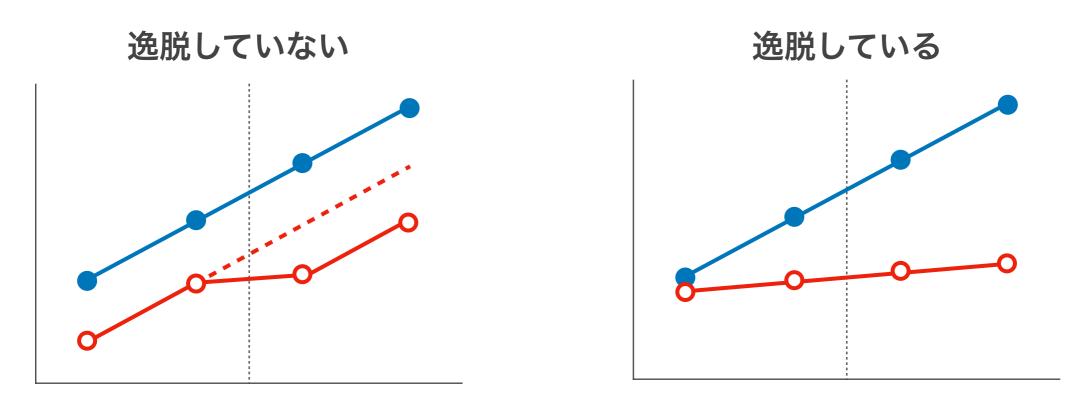
 D_{it} はイベントの発生前はずっと0、発生後はずっと1を取るダミー変数。

係数αは(イベントを経験しなかったときに得られるだろう)値の平均と、イベント発生後の値の平均の差を捉えたものと解釈できる



平行トレンドの仮定 parallel trend assumption

平行トレンドの仮定:イベントを経験した人としていない人は、仮にイベント経験がなかったならば平均的に同じトレンドをたどるだろう(イベント経験前後の差分の差はイベント経験のみによって生じる)という仮定



仮定を直接検証するのは不可能だが、それ以前のトレンドを確認したり(\rightarrow 後述)、統制したり(\rightarrow synthetic control method)、偽の処置に関する変数を作ったり(\rightarrow placebo test)することで仮定が正しいか推測することはできる

演習:イベント変数の作成

5_1_eventvariable.doを開き、イベント経験の変数の作りかたを確認しよう

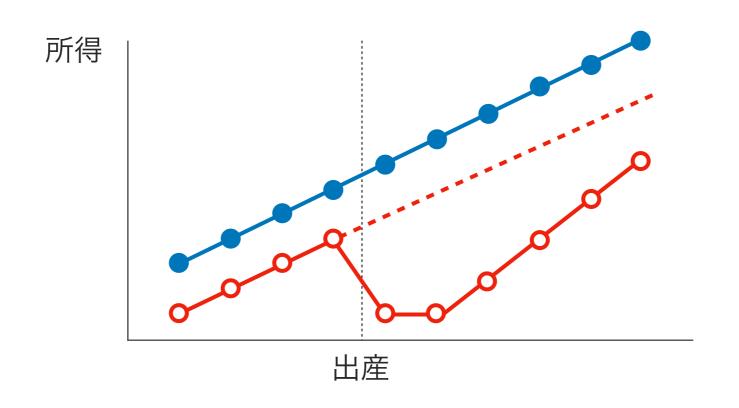
	id	year	child1birt~r	birthexp	birthgap	birth_lead10	birth_lead9
1	1	2007		0		0	0
2	1	2008		0		0	0
3	1	2009		0		0	0
4	1	2010		0		0	0
5	1	2011		0		0	0
6	1	2012		0		0	0
7	1	2013		0		0	0
8	1	2014		0		0	0
9	1	2015		0		0	0
10	1	2016		0		0	0
11	1	2017		0		0	0
12	2	2007	2000			0	0
13	2	2008	2000			0	0
14	2	2009	2000			0	0
15	2	2010	2000			0	0
16	2	2011	2000	•		0	0
17	2	2012	2000			0	0
18	2	2013	2000			0	0
19	2	2014	2000			0	0
20	2	2015	2000			0	0
21	2	2016	2000			0	0
22	2	2017	2000			0	0
23	3	2007		0		0	0
34	4	2007	2012	1	-5	0	0
35	4	2008	2012	1	-4	0	0
36	4	2009	2012	1	-3	0	0
37	4	2010	2012	1	-2	0	0
38	4	2011	2012	1	-1	0	0
39	4	2012	2012	1	0	0	0
40	4	2013	2012	0	1	0	0
41	4	2014	2012	0	2	0	0
42	4	2015	2012	0	3	0	0

演習:差分の差法

5_2_diff_in_diffs.doを開き、コードを順に実行しよう

```
Number of obs
HDFE Linear regression
                                                                           8,909
Absorbing 2 HDFE groups
                                                   F(
                                                        2.
                                                             1124) =
                                                                          199.85
                                                   Prob > F
Statistics robust to heteroskedasticity
                                                                          0.0000
                                                   R-squared
                                                                          0.6715
                                                   Adj R-squared
                                                                         0.6234
                                                   Within R-sq.
                                                                          0.1655
Number of clusters (id)
                                                   Root MSE
                                     1,125
                                                                          1.1730
                                  (Std. Err. adjusted for 1,125 clusters in id)
                             Robust
                    Coef.
   logincome
                            Std. Err.
                                                 P>|t|
                                                            [95% Conf. Interval]
                             .1062249
                                        -19.72
                                                 0.000
                                                                         -1.8867
    birthexp
                -2.095122
                                                          -2.303543
                            (omitted)
         age
                             .0006375
                                          0.03
                                                 0.978
                                                          -.0012332
 c.age#c.age
                 .0000177
                                                                        .0012686
                 5.097091
                             .7372255
                                          6.91
                                                           3.650598
                                                                        6.543584
                                                 0.000
       _cons
```

前後比較の拡張:長期効果 long-term effect の検証



子どもを持つことが所得に与える効果は出産経験後ずっと一定と考えるよりも、出産直後に最も大きく、その後は小さくなっていくと考えるほうが妥当かもしれない(e.g. 就業中断後の再就職)

このように効果が経過時間によって変化するのであれば、イベントからの時間を区 別できるモデリングが望ましい

イベントスタディデザイン Event-study design

$$Y_{it} = \sum_{p=2}^{P} \alpha_p D_{itp}^{lead} + \sum_{q=0}^{Q} \alpha_q D_{itq}^{lag} + \beta_1 X_{iti} + \dots + \beta_k X_{itk} + u_i + \tau_t + e_{it}$$

 D_{itp}^{lead} :個人iがイベントを経験した年から数えてp年前であることを示すダミー変

数。イベントを経験していない人は常に0をとる

 D_{itp}^{lag} :個人iがイベントを経験した年から数えてq年後であることを示すダミー変

数。イベントを経験していない人は常に0をとる

 α_p, α_q : 基準年(この場合イベントの1年前)と比較して、どれくらい Y_{it} の値が高いかを示す係数

イベントスタディの強み

DD:
$$Y_{it} = \alpha D_{it} + \beta_1 X_{it1} + \dots + \beta_k X_{itk} + \tau_t + u_i + e_{it}$$

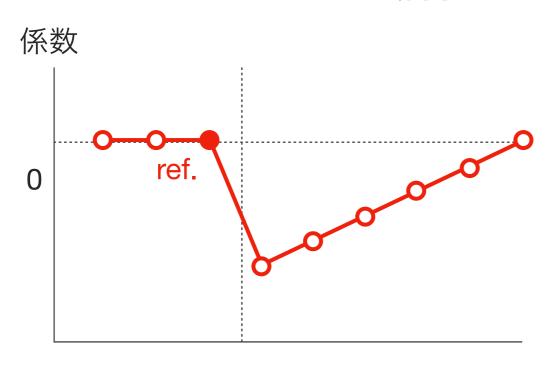
Event:
$$Y_{it} = \sum_{p=2}^{P} \alpha_p D_{itp}^{lead} + \sum_{q=0}^{Q} \alpha_q D_{itq}^{lag} + \beta_1 X_{iti} + \dots + \beta_k X_{itk} + u_i + \tau_t + e_{it}$$

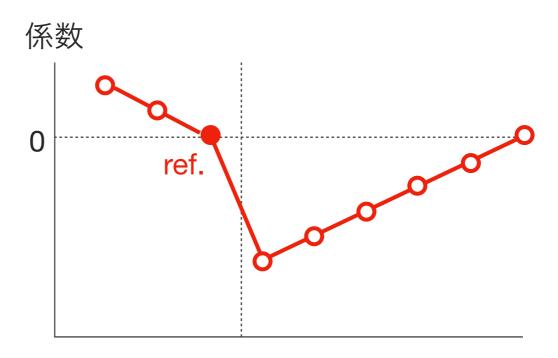
- 1. イベントの効果が時間によって変化する場合には、イベントスタディのほうがより正確な効果を記述できる。イベントの効果が時間によって変化するにもかかわらずDDを使った場合、観察期間の長さによって効果の大きさが変わる (イベントからの経過時間の分布が変わるため)
- 2. イベント以前のトレンド(pre-trend)を見ることで、間接的に平行トレンドの 仮定を検証できる

Pre-trendは平行トレンドの逸脱を見破る鍵

Pre-trendがない場合

Pre-trendがある場合





- 1. 除外変数バイアス: 処置群を統制群を分け、かつ従属変数に影響する要因が存 在する
- 2. 逆因果あるいはセレクション:従属変数が低下(上昇)傾向にある人は処置群 に入りやすい
- 3. 予期効果:将来の処置を予期して現在の行動を変える

イベントスタディによる出産の効果推定の事例

第一子出産直前と比較して女性の勤労所得(非就業者も含む)は大きく低下し、 その後多少上昇するものの、10年後も出産直前の水準に戻らない

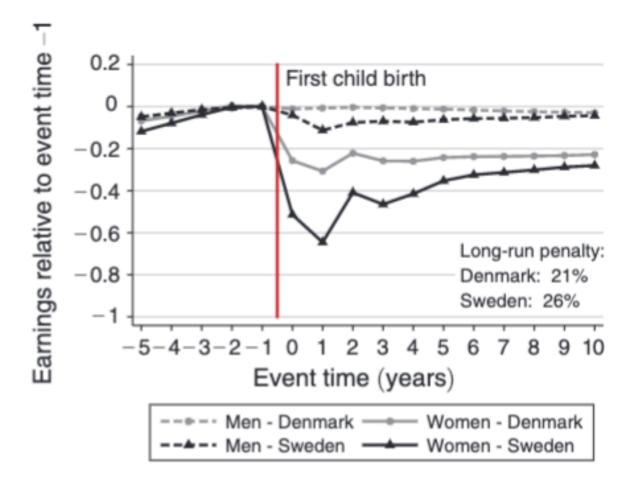


FIGURE 1. CHILD PENALTIES IN EARNINGS IN SCANDINAVIAN
COUNTRIES

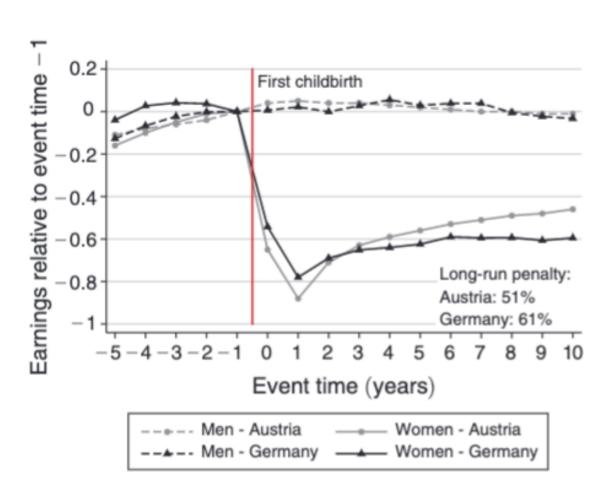


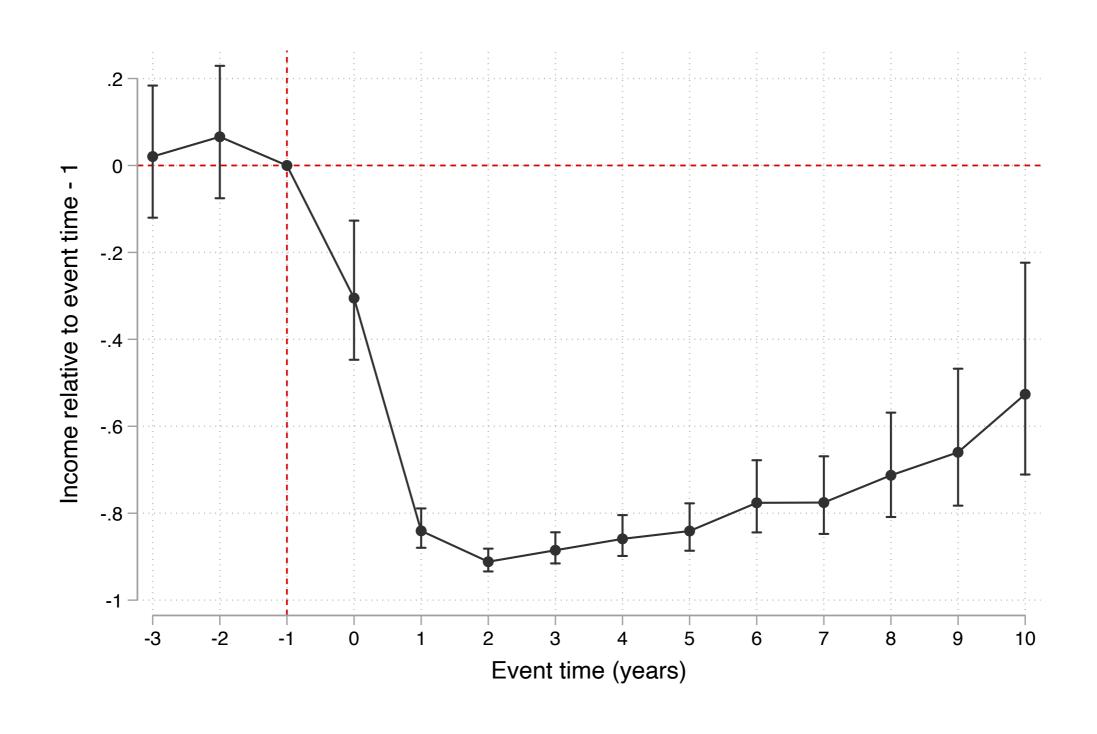
FIGURE 3. CHILD PENALTIES IN EARNINGS IN GERMAN-SPEAKING COUNTRIES

Kleven, Henrik, Camille Landais, Johanna Posch, Andreas Steinhauer, and Josef Zweimüller. 2019. "Child Penalties across Countries: Evidence and Explanations." *AEA Papers and Proceedings* 109:122–26.

69

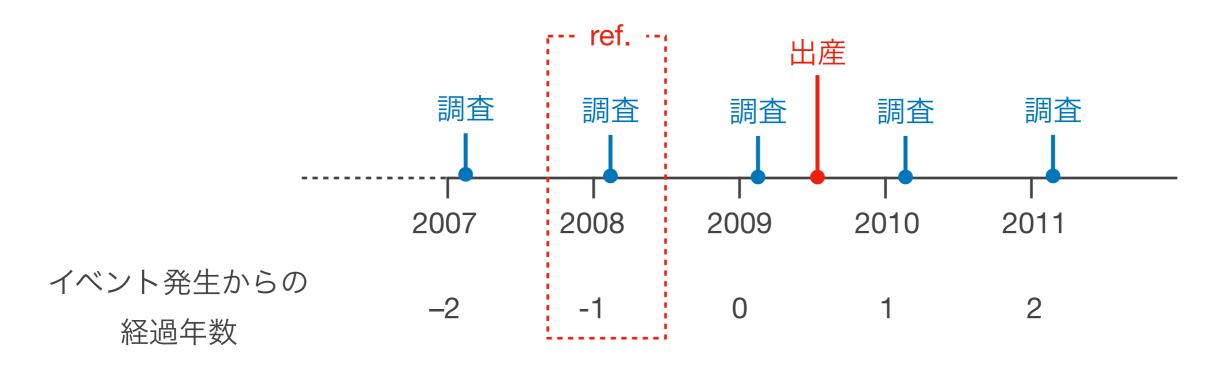
演習:イベントスタディ

5_3_eventstudy.doを開き、コードを順に実行しよう



イベントの発生時点の定義と参照時点の選択

今回の定義で2009年6月に第一子を産んだ対象者を考えると:



どの時点を比較対象時点として、どこと比較するのかは自明でない

今回の定義だと、「0年」時点ではまだ妊娠もしていないし発覚もしていないような人が含まれる。そのため、「0年」の係数は解釈が難しい

パネル調査データでイベントの効果推定をする際の注意点

イベントからの経過年数はどのように分布しているか?

- 今回のデータで出産後10年目を経験しているのは、2007年に出産した人だけ。 出産後経過年が長い観察ほど、該当ケースが少なくなる
- 出産後数年を経過した観察は欠損とするなど、一般化の範囲を限定するとよい かもしれない

適切な統制群(比較対象)を選んでいるか?

- 今回の分析は「2007-2017年に第一子を出産した人」と「2007-2017年に第一子を出産しなかった人」の比較であり、「2007年以前に第一子を出産した人」はサンプルに含んでいない
- イベントが起こりうる対象を意識する(c.f. 転職の効果分析の妥当な対象は?)

ランダム効果モデル

固定効果モデル Fixed-effects model

次のように、個人を表す項 u_i をモデルに含める:

$$Y_{it} = \beta_1 X_{it1} \cdots + \beta_k X_{itk} + u_i + e_{it}$$

- u_i は独立変数を統制したうえでの残差 r_{it} (ightarrowPooled OLS)の個人内平均を表す
- 時間不変の独立変数は u_i と区別できないため、推定から除外される。個人がわかれば必ずその値もわかる = 完全な共線性がある
- 係数 eta_j は、他の時間可変の独立変数と時間不変の個人要因を統制したうえで、 独立変数 X_{iti} が1単位高いときに従属変数 Y_{it} がどれだけ高いかを表す。**個人内効**

果 within-effect/within-estimatorとも言われる

ランダム効果(変量効果)モデル Random-effects model

以下のようにPOLSの残差を個人間残差と個人内残差に分けた式を考える:

$$Y_{it} = \beta_0 + \beta_1 X_{it1} \cdots + \beta_k X_{itk} + u_i + e_{it}, \quad u_i \sim N(0, \sigma_u^2).$$

- u_i は残差であり、独立変数とは相関しない $\mathrm{Cov}(X_{itj},u_i)=0$ と仮定される(下図)。当然、独立変数と残差に相関があれば、係数にはバイアスが生じる
- 時間不変の要因をすべて統制する固定効果モデルとは異なり、時間不変の変数 をモデルに含める余地が残っている

ランダム効果モデルに似たモデルのさまざまな呼び名

階層線形モデル Hierarchical linear model

マルチレベルモデル Multilevel model

ランダム切片/傾きモデル Random-intercept/random-slope model

成長曲線モデル Growth curve model

いずれも切片(あるいは傾き)に**独立変数とは相関しないと仮定されたばらつきを認める**という点でランダム効果モデルと共通している

「ランダム効果モデルと成長曲線モデルは同じなのか(違うのか)」と聞かれて も「場合による」としか答えられない。式を見てはじめて判断できる

ランダム効果モデルの位置づけ

REはquasi-demeaningともよばれる。詳細な証明 (Wooldridge 2010) は省略するが......

$$Y_{it} - \theta \overline{Y}_i = \beta_0 (1 - \theta) + \beta_1 (X_{it1} - \theta \overline{X}_{i1}) + \dots + \beta_k (X_{itk} - \theta \overline{X}_{ik}) + (1 - \theta) u_i + (e_{it} - \theta \overline{e}_i),$$

ただし
$$\theta = 1 - \sqrt{\frac{\sigma_e^2}{\sigma_e^2 + T\sigma_u^2}}$$

POLS RE $\theta = 0$ $\theta = 1$

残差の個人内平均 u_i のばらつき σ_u^2 が小さい (人によって平均水準が異ならない) 残差の個人内平均 u_i のばらつき σ_u^2 が大きい (人によって平均水準が異なる)

REにおける時間可変の変数の係数はPOLSとFEの間にあり、 σ_u^2 が小さければ

POLSに近い推定値となり、大きければFEに近い推定値となる。

ランダム効果モデルと固定効果モデル

パネルデータを分析する最大の動機は、観察期間中に変化しない個人の要因を除いたうえで、独立変数の効果(個人内効果)を推定すること

→この目的であれば、常にREよりもFEのほうが望ましい

にもかかわらずREを選択しなければいけないのはどんな場面か?

- 時間可変の独立変数の効果に関心があるが、(観察期間が短い、分散が少ないなどの理由から)個人内分散が少なく満足な推定ができない。そうしたなかでもなお、ちょっとだけでも「効果」に近い推定値を得たい
- 時間不変の独立変数の効果に関心がある(普通のクロスセクションのデータと同じ分析がしたいだけ)

おすすめしない古のモデル選択法:Hausman検定

Hausman (1978) 検定:REとFEの係数が等しい(H_0 : $\beta^{FE} = \beta^{RE}$)という帰無仮説を検定し、帰無仮説が棄却されればFE、棄却されなければREを用いる

この方法でモデル選択をすべきではない

- Hoが棄却されなかったからといってREが一致推定量(よりバイアスの少ないという意味)を与えるということにはならない
- データの限界(観察期間が少ないなど)によってFEの係数が安定して推定できていないだけの可能性がある

ランダム効果モデルとPooled OLS

FEではなくREを使うことを選択したという条件のもとで、REとPOLSではどちらを使えばよいのだろうか?

→ <u>常に</u>POLSよりもREを使うべき

REは残差のうち u_i に由来する部分を(不完全ではあれ)統制しており、一般に POLSよりも一致推定量に近く、かつ有効性(係数のばらつき = 標準誤差が小さ いという意味)の高い推定値が得られる

*ただし、非線形モデルを使っていて、かつ予測確率を求めることを関心とする場合にはREでなくPooledモデルを選択することがある

おすすめしない古のモデル選択法:BP検定

Breusch-Pagan (1980) 検定:REにおいて H_0 : $\sigma_u^2 = 0$ という帰無仮説を検定し、棄却されればRE、棄却できなければPOLSを用いる

この方法でモデル選択をするべきではない

- Hoが棄却されなかったからといってPOLSが一致推定量を与えるということにはならない
- モデルの特定化の誤りによって帰無仮説が棄却されないだけの可能性がある

習:ランダム効果モデルの推定

6 1 randomeffect.doを開き、コードを順に実行しよう

Random-effects GLS regression

```
Group variable: id
                                                 Number of groups =
                                                  Obs per group:
R-sq:
     within = 0.0220
                                                                min =
                                                                                2
     between = 0.2028
                                                                              7.4
                                                                avg =
     overall = 0.1254
                                                                max =
                                                                               11
                                                  Wald chi2(6)
                                                                           395.25
corr(u i, X) = 0 (assumed)
                                                  Prob > chi2
                                                                           0.0000
                                              (Std. Err. adjusted for 1,750 clusters in id)
                                         Robust
                                                                        [95% Conf. Interval]
                                Coef.
                                        Std. Err.
                                                             P>|z|
                    swb
                                                        Z
                 status
Non-regular employment
                                                     -4.83
                                                             0.000
                            -.1769834
                                         .036605
                                                                       -.2487278
                                                                                    -.105239
                                                             0.026
                                                     -2.22
                    age
                            -.0355009
                                        .0159601
                                                                       -.0667821
                                                                                   -.0042196
                             .0004172
                                        .0002158
                                                     1.93
                                                             0.053
                                                                      -5.68e-06
            c.age#c.age
                                                                                    .0008401
                marstat
               Married
                             .5089553
                                        .0329953
                                                     15.43
                                                             0.000
                                                                        .4442856
                                                                                     .573625
    Separated/divorced
                              .018831
                                        .0756579
                                                      0.25
                                                             0.803
                                                                       -.1294556
                                                                                    .1671177
             loghincome
                             .0836224
                                        .0205137
                                                      4.08
                                                             0.000
                                                                        .0434163
                                                                                    .1238285
                              3.51828
                                        .2991647
                                                     11.76
                                                             0.000
                                                                        2.931928
                                                                                    4.104632
                  _cons
                             .6076966
                sigma_u
                sigma_e
                            .63335059
                            .47933758
                                        (fraction of variance due to u_i)
                    rho
```

Number of obs

12,990

1,750

Within-between random-effects model* (REWB)

ランダム効果モデルに時間可変の独立変数とその個人内平均を含めることで、時間可変の独立変数については個人内効果を求めつつ、時間不変の部分の効果(個人間効果)を求めることができる。

$$Y_{it} = \beta_0 + \beta_1^w X_{it1} \cdots + \beta_k^w X_{itk} + \beta_1^b \overline{X}_{1i} \cdots + \beta_k^b \overline{X}_{ik} + \gamma_1 Z_{i1} + \cdots + \gamma_k Z_{ik} + u_i + e_{it},$$

$$u \sim N(0, \sigma_u^2).$$

または:

$$Y_{it} = \beta_0 + \beta_1^w (X_{it1} - \overline{X}_{i1}) \cdots + \beta_k^w (X_{itk} - \overline{X}_{ik}) + \beta_1^b \overline{X}_{1i} \cdots + \beta_k^b \overline{X}_{ik}$$
$$+ \gamma_1 Z_{i1} + \cdots + \gamma_k Z_{ik} + u_i + e_{it}, \quad u \sim N(0, \sigma_u^2).$$

 eta_j^w は個人内効果を表す係数、 eta_j^b は個人間効果を表す係数。

*1つ目の式はMundlak model や Correlated random effects model、2つめの式は Hybrid model(Allison 2009)などともよばれることがある。Allison, P. D. (2009). Fixed Effects Regression Models. Sage.

83

REWBをいつ使うか

パネルデータを使っていて、かつ、時間不変の変数の係数に関心があるならば、 REWBはよい選択肢かもしれない

時間不変の変数Zは、時間不変という定義上、時間可変の変数のうち時間不変の部分とのみ相関するはずなので、REWBのほうが理に叶っているかもしれない

実際のところ......

REWBはFEの特徴もREの特徴を併せ持つ(より一般的な)モデルで、これを使うことをデフォルトにすることを推奨する一派もいるが (Bell and Jones 2015; Bell et al. 2019) 、「併せ持つ」ことによってはじめて答えられる問いはあるのかと考えると、よくわからない

知りたい問いが個人内の変化の効果に関するものならわざわざ複雑なモデルを持ち込む必要はない。FEをデフォルトの選択として考えるのがよい

REWBを使いたい衝動に駆られたら、自分の問いが何かを改めて考えよう

Bell, Andrew, and Kelvyn Jones. 2015. "Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data." *Political Science Research and Methods* 3(1):133–53.

Bell, Andrew, Malcolm Fairbrother, and Kelvyn Jones. 2019. "Fixed and Random Effects Models: Making an Informed Choice." *Quality and Quantity* 53(2):1051–74.

演習:within-between random effects modelの推定

6_2_wbre.doを開き、コードを順に実行しよう

Variable model	
cwh	
SWD	
Rcohort_d2	6
0.053	7
0.164	7
Rcohort_d3	2
0.085	3
0.133	2
Rcohort_d4	7
0.116	0
0.004	1
Wstatus_d2	8
0.040	6
0.000	5
Wage	1
0.002	6
0.974	2
Wmarstat_d2 0.436	1
0.045	
0.000	
Wmarstat_d3 0.053	
0.090	
0.556	
Wloghincome 0.010	5
0.021	8
0.631	4

カテゴリ変数を従属変数にする

線形確率モデルを使う方法

最もシンプルな方法は、これまでの連続変数を従属変数とするモデルをそのまま 適用すること(**線形確率モデル Linear probability model**)

$$Y_{it} = \beta_1 X_{it1} + \dots + \beta_k X_{itk} + u_i + e_{it}$$

係数 eta_j は、独立変数 X_{itj} が1ポイント高いと、従属変数が1をとる確率(割合)が何ポイント高いのかを表す

よく言われている線形確率モデルの注意点 (Mood, 2010)

- 1. 予測値が確率の定義上あり得ない数値(0未満、あるいは1より大きい)になる ことがある
 - →普通の回帰分析でもこういうことはある
- 2. 残差が正規分布しない(不均一分散)ため標準誤差にバイアスが生じる
 - →ロバスト標準誤差(頑健標準誤差)を使うことで対処可能
- 3. **関数型の誤り**:もし真の関係が非線形——従属変数が1をとる確率が低い個人と中程度の個人で、ある独立変数が1単位増えることによる確率の増加量が異なる——のであれば、変数の効果を正しく推定できない

Mood, Carina. 2010. "Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do about It." *European Sociological Review* 26(1):67–82.

ロジスティック回帰分析 / ロジットモデル

二値変数を従属変数とするときには、ロジットモデル(あるいはプロビットモデル)がしばしば用いられる。ロジットモデルは次のように表記される:

$$\log \frac{\Pr(Y_{it} = 1)}{1 - \Pr(Y_{it} = 1)} = \beta_0 + \beta_1 X_{it1} + \dots + \beta_k X_{itk}$$

または

$$\Pr(Y_{it} = 1) = \frac{\exp(\beta_0 + \beta_1 X_{it1} + \dots + \beta_k X_{itk})}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_{itk})}$$

係数 eta_i は、 X_{iti} が1単位増加したときの従属変数の対数オッズの増加量を示す。

潜在変数による定式化

$$y_{it}^* = \beta_0 + \beta_1 X_{it1} + \dots + \beta_k X_{itk} + r_{it}, \quad y_{it} = \begin{cases} 1 & \text{if } Y_{it}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

ただし r_{it} は平均0、分散 $\pi^2/3$ のロジスティック分布にしたがう。残差が固定されているということから、以下の解釈上の注意を要する:

- 異なるサンプルからなるモデル間で係数の大きさを比較できない
- 異なる独立変数を含むモデル間で係数の大きさを比較できない

ロジットモデルの結果を解釈するときには、平均限界効果 Average marginal effectなどを併せて使うことが強く推奨される

Mood, Carina. 2010. "Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do about It." *European Sociological Review* 26(1):67–82.

Long, J. Scott, and Jeremy Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata, Third Edition. Stata Press.

Mize, Trenton D., Long Doan, and J. Scott Long. 2019. "A General Framework for Comparing Predictions and Marginal Effects across Models." Sociological Methodology 49(1):152–89.

固定効果/ランダム効果二項ロジットモデル

固定効果ロジットモデル Fixed-effects logit

$$\log \frac{\Pr(Y_{it} = 1)}{1 - \Pr(Y_{it} = 1)} = \beta_1 X_{it1} + \dots + \beta_k X_{itk} + u_i$$

連続変数の固定効果モデルと同様、係数は観察期間中は変化しない個人要因を統制したうえでの独立変数の効果(個人内効果)を表すものと解釈できる

観察期間中に従属変数にまったく変化がない個人は分析から除外される

ランダム効果ロジットモデル Random-effects logit

$$\log \frac{\Pr(Y_{it} = 1)}{1 - \Pr(Y_{it} = 1)} = \beta_1 X_{1it} + \dots + \beta_k X_{kit} + u_i, \quad u_i \sim N(0, \sigma_u^2)$$

 u_i は独立変数と相関しない残差と仮定される。

固定効果/ランダム効果ロジットモデルの問題

対数オッズの解釈のしにくさ

固定効果/ランダム効果ロジットモデルでは平均限界効果(Average marginal effects)を計算できないため、係数を対数オッズとして解釈するしかない。そのため、実質的な効果の大きさをつかみにくい

潜在変数の分散変化

固定効果ロジットモデルやランダム効果ロジットモデルは(当たり前だが) Pooled logitよりも従属変数をよく予測する

しかし潜在変数の残差 e_{it} は常に $\pi^2/3$ で固定されているため、潜在変数の分散が大きくなり、見かけ上係数の絶対値が大きくなる

演習:線形確率モデルとロジットモデル

6_3_binary.doを開き、コードを順に実行しよう

	LPM-pooled	LPM-FE	LPM-RE	Logit-pooled	Logit-FE	Logit-RE
main						
-3	0.044*	0.015	0.024	0.660*	0.705	0.886
	(0.017)	(0.020)	(0.018)	(0.316)	(0.469)	(0.462)
-2	0.026	-0.000	0.008	0.290	-0.005	0.260
	(0.019)	(0.019)	(0.017)	(0.234)	(0.348)	(0.318)
0	-0.173***	-0.170***	-0.170***	-0.922***	-1.835***	-1.780***
	(0.031)	(0.029)	(0.027)	(0.167)	(0.290)	(0.265)
1	-0.364***	-0.361***	-0.362***	-1.673***	-3.666***	-3.459***
	(0.033)	(0.030)	(0.029)	(0.169)	(0.325)	(0.283)
2	-0.331***	-0.318***	-0.320***	-1.539***	-3.241***	-3.071***
	(0.033)	(0.030)	(0.028)	(0.172)	(0.330)	(0.278)
3	-0.311***	-0.301***	-0.300***	-1.459***	-3.062***	-2.877***
	(0.035)	(0.031)	(0.029)	(0.179)	(0.339)	(0.287)
4	-0.243***	-0.244***	-0.242***	-1.181***	-2.584***	-2.392***
	(0.038)	(0.034)	(0.032)	(0.190)	(0.356)	(0.323)
5	-0.213***	-0.203***	-0.201***	-1.053***	-2.112***	-1.957***
	(0.040)	(0.035)	(0.033)	(0.201)	(0.366)	(0.329)

その他のStataのコマンド

さまざまな場面に応じたコマンドが準備されている

- 固定効果/ランダム効果**多項ロジット**モデル:xtmlogit(Stata 17から)
- 固定効果順序ロジットモデル:feologit (Baetschmann et al., 2020)
- ランダム効果**順序ロジット**モデル:xtologit
- 固定効果/ランダム効果ポワソン回帰:xtpoisson
- ランダム効果トービットモデル:xttobit

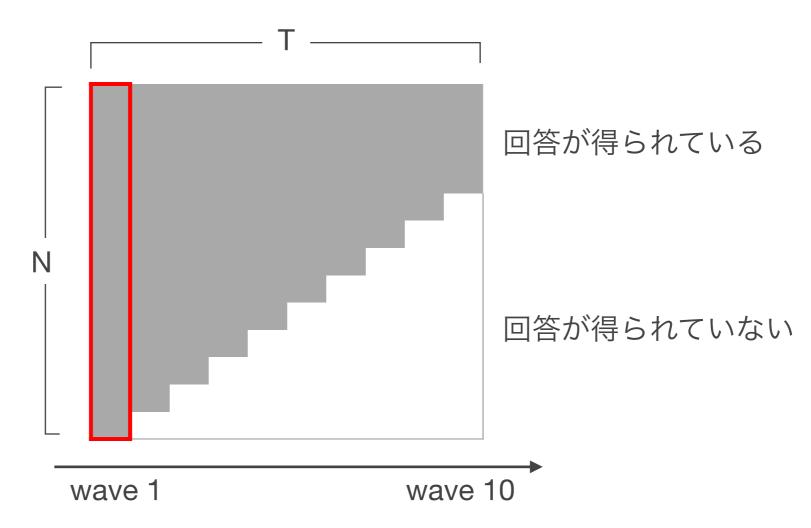
ただしこれらはいずれも線形回帰のように単純ではなく、あまり使われない(少なくとも自分は論文でこれまでに一度も見たことがない)。

脱落の問題と対処

パネル調査データにおける偏りの出処

パネル調査データにおける母集団からの偏りは以下の2つの過程で生じる:

脱落がなぜ問題となるのか



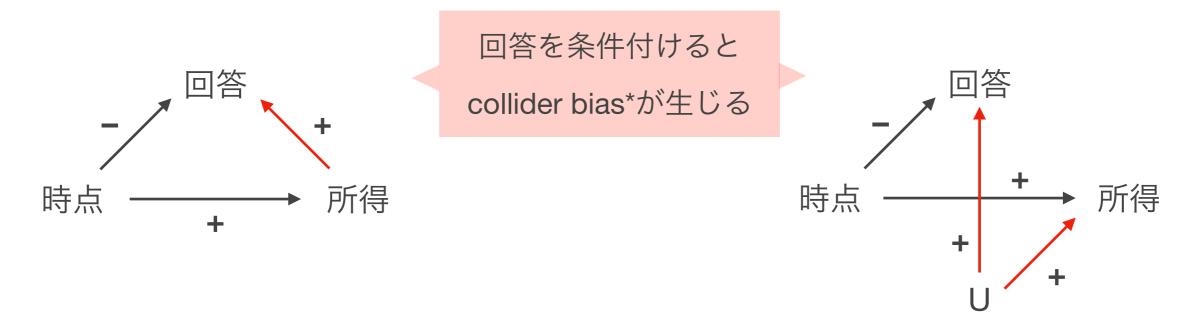
調査を重ねるにつれて、回答が得られているサンプルと回答が得られていないサ ンプルが生まれる

回答が得られるかどうかが系統的に異なり、サンプルがもともとのターゲット母 集団を反映しないサンプルになっていくことで、サンプルから得た結果が必ずし もターゲット母集団に一般化できなくなるかもしれない

脱落が問題になるとき:記述

「1966-86年生まれコーホートの所得は2007年から2017年にかけてどのように推移したのか?」という**記述的問い**であれば、次のようなとき、脱落は問題になる

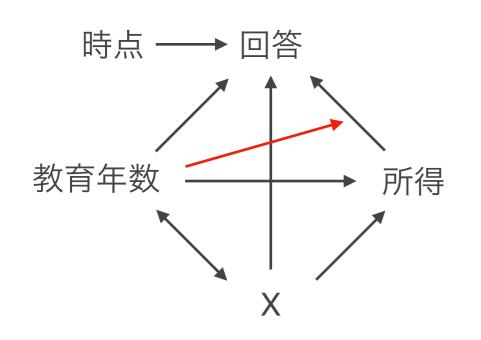
- 所得が低い人ほど継続回答しにくいなど、所得が回答確率に影響する。この場合、時間が経つにつれて所得(の平均値など)は過大推計となる
- 所得が回答確率を直接左右しないとしても、回答確率と所得の両者と相関する 何らかの要因がある。この場合、所得は過大また過小推計となる

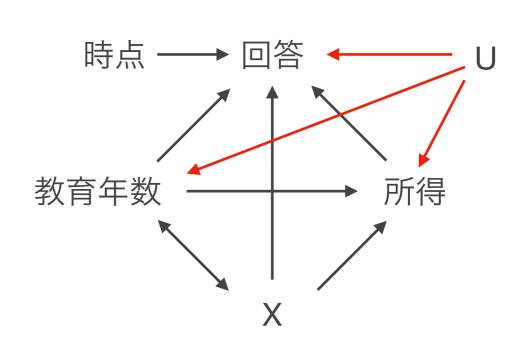


脱落が問題になるとき:固定効果モデルでない回帰分析

「他の変数を統制した上で、教育年数が所得に与える影響はどの程度であるのか?」という**回帰分析を使った問い**であれば、次のようなとき脱落は問題になる

- 他の変数を統制したうえで、学歴が低くかつ所得が低い人ほど継続回答しにくいなど、学歴と所得の組み合わせが脱落確率に影響する。この場合、他の変数を統制したうえで教育年数の係数は過小推計となる
- 他の変数を統制したうえで、回答確率、学歴、所得のいずれとも相関する観察 されない要因がある。





固定効果モデルは脱落の影響を小さくできる

時間不変の個人要因を統制する固定効果モデルは、回答確率に影響しうる時間不変の個人要因をすべて統制することができる(e.g. 回答への熱心さ、など)

そのため、一般に固定効果モデルは脱落の問題に対して比較的頑健

ただし、時間可変の要因が脱落に影響することについては統制できない(e.g. 観察期間中の転居)

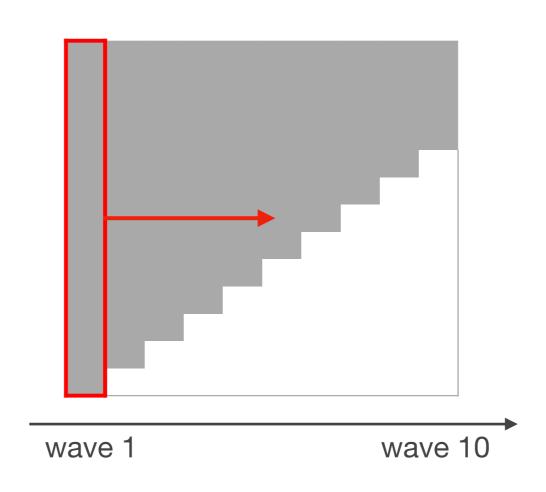
脱落の問題のまとめ

脱落が問題になるかどうかは、何を目的とするのかに依存する:

- 少ない変数での記述を目的とする場合:脱落は常に考慮すべき問題。ケースバイケースだが、個人内変化を伴わない集団の変化の記述が目的なら、繰り返しクロスセクション調査のほうが好ましいことも多い
- 複数の変数を用いて回帰分析/固定効果モデルを使う場合:脱落が大きく結果 を左右する可能性は高いとはいえない

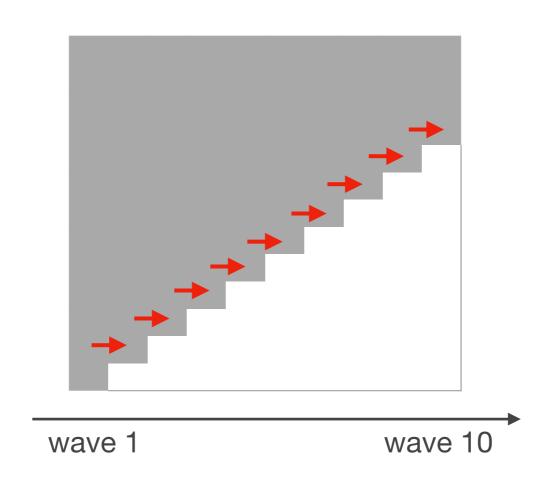
パネル調査データにおける偏りが結果に与える影響は脱落よりもむしろ最初のサンプリング時点での歪みのほうが大きいとの指摘もある (小川 2019)

脱落補正のバリエーション:wave 1への補正



- 1. N×Tのサンプルを作成し(→回答の複製)、各時点で回答しているか否かを従属変数、wave 1時点の独立変数で回帰するロジット/プロビットモデルを推定し、回答の予測確率を求める
- 2. 予測確率の逆確率を求め、回答しているサンプルにウェイトをかける

脱落補正のバリエーション:隣接waveへの補正



- 1. wave tに回答したという条件のもとで、wave t+1に回答するか否かを示す変数を作成し、wave t時点の独立変数で回帰するロジット/プロビットモデルを推定し、回答の予測確率を求める
- 2. 予測確率の逆確率を求め、回答しているサンプルにウェイトをかける

演習:脱落の予測確率計算とウェイト(wave 1への補正)

6_4_attrition.doを開き、コードを順に実行しよう

id	wave	response	sex	cohort	prob	inv_prob
8	8	1	Women	1971–75	.7311258	1.367754
8	9	1	Women	1971–75	.7046357	1.419173
8	10	0	Women	1971–75	.6927152	1.443595
8	11	0	Women	1971–75	.6821192	1.466019
9	1	1	Men	1971–75	.8017136	1
9	2	1	Men	1971–75	.8017136	1.247328
9	3	0	Men	1971–75	.7405141	1.350413
9	4	0	Men	1971–75	.6548347	1.527103
9	5	0	Men	1971–75	.6744186	1.482759
9	6	0	Men	1971–75	.6401469	1.562142
9	7	0	Men	1971–75	.619339	1.614625
9	8	0	Men	1971–75	.6070991	1.647177
9	9	0	Men	1971–75	.5997552	1.667347
9	10	0	Men	1971–75	.5728274	1.745727
9	11	0	Men	1971–75	.5618115	1.779956
10	1	1	Women	1976-80	.8138528	1
10	2	1	Women	1976-80	.8138528	1.228723
10	3	0	Women	1976-80	.7770563	1.286908
10	4	0	Women	1976-80	.7294372	1.37092
10	5	0	Women	1976-80	.7294372	1.37092
10	6	0	Women	1976-80	.7186147	1.391566
10	7	0	Women	1976-80	.7056277	1.417178

まとめ:パネル調査データの可能性

パネル調査データの最大の強みは、クロスセクションのデータでは捉えられなかった個人の変化を捉えることができること

パネル調査データは因果関係を証明する万能のツールではないが、適切な問いと 分析があれば、これまでわからなかった実態や因果関係に近づける

パネル調査データを加工するためには通常のクロスセクションのデータよりも手間が必要であるものの、基本的な手順は同じであり、決して難しくない

まとめ:明確な問いを立てることの重要性

近年の因果推論の発展によって、データ分析はよりシンプルで分かりやすいもの になっている(脱魔術化している)

高度なモデルやテクニックではなく、よいリサーチデザイン(問い)があれば、 意味ある結果を得ることができる

パネル調査データは一見情報量が多く複雑なため、何をやっているのか(やればいいのか)わからなくなりやすい

パネルデータではじめて答えられる**明確な問いを立てられているか?どのような 問いに答えたいのか?今行っている分析は、答えたい問いにとって必要なのか?** を考えることが重要

今後の学習のための参考文献

計量経済学/因果推論関連

Wooldridge, Jefrey. 2019. Introductory Econometrics, 7th Edition. Cengage Learning.

西山慶彦・新谷元嗣・川口大司・奥井亮, 2019, 『計量経済学』有斐閣.

Huntington-Klein, Nick. 2021. *The Effect: An Introduction to Research Design and Causality*. https://theeffectbook.net/

Cunningham, Scott. 2021. *Causal Inference: The Mixtape.* Yale University Press. https://mixtape.scunning.com/

伊藤公一朗,2017,『データ分析の力:因果関係に迫る思考法』光文社新書.

松林哲也,2021,『政治学と因果推論』岩波書店.

Morgan, Stephan and Christopher Winchip. 2015. Counterfactuals and Causal Inference: Methods and Principles for Social Research, 2nd Edition. Cambridge University Press. (落海浩訳, 2023 (予定), 『反事実と因果推論』朝倉書店.)

今回扱わず、先の書籍で扱われていないような論点の一例

時変の変数どうしの交互作用

Giesselmann, Marco, and Alexander W. Schmidt-Catran. 2022. "Interactions in Fixed Effects Regression Models." *Sociological Methods & Research* 51(3):1100–1127.

交差ラグ効果を考慮した因果関係の方向性の検証

Leszczensky, Lars, and Tobias Wolbring. 2022. "How to Deal With Reverse Causality Using Panel Data? Recommendations for Researchers Based on a Simulation Study." *Sociological Methods & Research* 51(2):837–65.

今回扱わなかった他の方法

Singer, Judith D. and John B. Willett. 2003. *Applied longitudinal data analysis: Modeling change and event occurrence.* Oxford University Press. (菅原ますみ監訳, 2014, 『縦断データの分析I / II』朝倉書店.)

Cornwell, Benjamin. 2015. Social sequence analysis: Methods and application, second edition. Cambridge University Press.

Nagin, Daniel S. 2005. *Group-based modeling of development.* Harvard University Press.

Blossfeld, Hans-Peter, Gotz Rohwer, and Thorsten Schneider. 2019. *Event history analysis with Stata, second edition.* Routledge.

Rabe-Hesketh, Sophhia and Anders Skrondal. 2022. *Multilevel and longitudinal modeling using Stata, Volume I/II, fourth edition.* Stata Press.